
VISCOUS LIQUID FLOW IN A NARROW GAP 

BETWEEN TWO NONPLANAR SURFACES 

P. A. Novikov and L. Ya. Lyubin UDC 532.55 

The effect of gap median surface form on the character of Hill-Show type 
flow (Re ~ i) is demonstrated. 

To describe flow in a gap between neighboring nonplanar surfaces we introduce a syste~ 
of curvilinear orthogonal coordinates x ~, x =, x ~, with the coordinate surface x ~ = 0 being 
the median surface of the gap. As is well known [i], the equations of continuity and steady 
state motion of a viscous, weightless, incompressible liquid in such curvilinear orthogonal 

coordinates have the following form: 

a(H~,Ha,vx.) + O(Ha,H,,v. 0 + O(H,,H~,v,:.) __ O; 
Ox ~ Ox ~ Ox a 

a ( v.k avxi o~k OHm, v.~v~ OHm, ) 
P ~=,X \ H~, Ox ~ H~,H~, Ox' }- H~,H~, Ox ~ -- (1) 

1 ap 1 a [ 1 O(Ha,H2,H~, ) OlnHk, ] 
Hi, ax i + ~ X H1,H~,Hs, ax k Hh, "rik -- %k ; 

[ 1 0v~i 1 0 v , k  1 ( OHm, OHk, ) a ] . . . . . .  Vx~ - -  + v.~ + 26~ ~ v,x a In Hi, 
xi~ = pv H ~  ax h + Hi, Ox ~ Hi,Hh, Ox h Ox ~ Hx, Ox ~ �9 �9 (2) 

We take the gap size constant and equal to 2h, and construct the coordinate system such 
that along the median surface (x ~ = 0) the coefficient H3, = i. To write Eqs. (I), (2) in 
dimensionless form we introduce new variables: Hj,dxJ = r0Hjd~J; dx 3 = hd~; h/r 0 = g; j = 
I, 2; Vxj = Vuj; Vx3 = Vw; p = (pvr0V/h2)H; Re, = Vh/v. 

We will assume that the linear scale r 0 characterizing the curvature of the median sur -' 
face is also the characteristic scale of the flow on this surface, i.e., that for any hydro- 
dynamic parameter A on the contour r which bounds the flow region under consideration the 
inequality iA(~, ~) - A(~, ~)[ ~ [A($~, ~)[ is satisfied, if 6 ~ r0, where ~ is the 
shortest distance between the points ($~, $~) and ($~, g~) along the median surface (~ = 0 
along a geodesic line). From (2) we have 

,r~ h L ~  + 0  ; v ~ . ~ = - -  2 + o ( e )  ; 
= - -  k a ~ ' / J  h 

- - - - -  ~ - -  + 0 (~2) . 
ax ~ h a~ka$ 

The gap 2h is assumed so small that the number Re = eRe, << I, while the ratio of the 
characteristic dimensions g = yRe3[~ = O(i)]. Then Eqs. (i), (2) can be rewritten in the 
form 

Ow ~ O(H1H2) ~7I~e______~3 [ O(H~u~) .~ O(Hlu2) ] .  (3) 
O~ + H1H2 O~ = H1H2 O~ I a~- z ' 
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~2U] 1 {~II [ ~  i U~ l~U~. Ui ' ~Hh UhU ] ~g] ) [o.)uj l~g] l 
0~ ---Z-- = H~- 0~ i q- Re - -  .- _ _  �9 (4)  i -Hh 6~ ~ HsH~ O~ 1 + HhH s O~ h + ' H i  ~0~ ' 

0II = 0 (Re w 2) + 0 (RO w) + 0 (RO u~) + 0 (R@ uh); (5) 
0;  

OH___L = a H j ,  = 0(1);  1, k = 1, 2. ( 6 )  
eO~ Ox 8 

The velocity components uj, w must satisfy the adhesion boundary conditions 

U j = 0 ,  N ' = 0  a t  ~ = •  (7) 

We will seek a solution of the corresponding problem for the hydrodynamically stabilized 
flow region in the form of a regular e~p@nsion i~ the small parameter Re: 
+ ...; w = w (~ + Re w "CI) + ...; H = H ku) + Re n(I) + .... 

From Eqs. (3), (5), (7): 

all( o 
~ ) ( 0 ) = W ( I ) - = ~ ) ( 2 ) = 0 ; - - ~ 0  a t  i -~3 .  (8)  

0~ 
Thus, as a zeroth iteration we obtain a natural generalization of the equation describ- 

ing Hill-Show flow in slot channels with a nonplanar median surface: 

O~u} ~ 1 0H (~ 
O~ - - - - ~ - - -  = H~-- a~ - - - - T - - ' '  u}0) = 0 a t  ~ = _ 1 .  (9)  

I t  f o l l o w s  f rom gq.  (6)  t h a t  t h e  change in  t h e  c o e f f i c i e n t  Hj a c r o s s  t h e  gap i s  o f  t h e  
o r d e r  o f  m a g n i t u d e  o f  e = ~Re 3. T h e r e f o r e  in  d e t e r m i n i n g  t h g  f i r s t  t h r e e  i t e r a t i o n s  i t  
can be assumed that Hj = Hj($ I, $2, 0), while from Eqs. (8), (9) we have 

1 - -  ~z 1 0H (~ ( i 0 )  (0) = 

u i 2 H j O~ ~ 
I n t e g r a t i n g  Eq. (3)  over  ~ w i t h  c o n s i d e r a t i o n  o f  t h e  second  boundary  c o n d i t i o n  o f  Eq. ( 7 ) ,  
we obtain an equation for the specific liquid fluxes 

O(H~qO -b O(H,q~) = O ( e ) = O ( R @ ) ;  (11)  
0~ O~ ~ 

Uj = U j ( ~ )  + Reu~l) 

But in light of Eq. 

and consequently, 

I 
2q~ = ~ uj (~, ~2, ~)d$ 

--1 
(10)  

= 2(q} ~ -t- Req}')-t-  Re'q} 2) + . . . ) .  (12) 

1 1 0H (~ (13) q(O) _ 
] 3 Hj O~ i 

0~ ~ H I 0~ ~- a-~-- H2 ~ ] =0 .  (14) 

If the pressure distribution is specified along the contour F bounding the flow region 
under consideration the function n(~ 2) can be defined by solution of theDirichlet 
problem for Eq. (14). With a known distribution of the normal component qn = qn along the 
contour r finding the pressure coefficient H (~ in the region S of the median surface re- 
duces to solution of the Neiman problem for Eq. (14) 

On the basis of Eqs. 

1 alFI (~ 1 817 (0) 
- - c o s ( n ,  el)-~ --cos(n, e2)=3qn ~n r .  (15) 

H1 a~ 1 H~ a~ 2 
(i0)-(12) we have 

O(H~176 + O(H~u(2~ O, (16) 
0~ 0~ ~" 
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while it follows from Eqs. (3), (6), (7) that w (3) = 0. Therefore the equation forthefirst 
approximation can be written in the form 

a~u~ ') l '  oH (') 2 [  u(O) autO) (u~~ ~ ait~ u(~~ ~ OHj ]} (17) 

h = ,  

The second term in cu r ly  b racke t s  can be r e p r e s e n t e d  in t en so r  form: ( U ( ~ 1 7 6  k 
[1] .  Here (U(~  i ,  (U(~  are  r e s p e c t i v e l y  the  c o n t r a v a r i a n t  and cova r i an t  components of 
the  v e c t o r ,  the  p h y s i c a l  components of  which are  equal  to u j ( ~  uj (~  Hj (U(~  = H]~(U(~ 
( U(~ k is the covariant der:[vative of the covariant vector; we perform a summation over 
the in~ices appearing twice ~n the tensor equatzons. Since 

I 0 (u(O))k (u(O~)i,~= [(u(O~ )i,~-- (U(~ h,~] ( U(~ )~ + ~ -6~ ~ [(U(~ (U~~ 

and it follows from Eq, (i0)that (U(~ - (U(~ = 0, 

(u(O))n (u(O))~ ( 1 " ~ )  1 1 

Consequent ly ,  Eq. (17) can be r e w r i t t e n  in the  form 

~u, ') = 1 a I I ( l )+  (1--~=)2 1 _ _  o ~ 1 ( I  OH(~ 2 
a;  -~ as a~ ~ 8 a~ a~ ~ H~ a~ ~ 

and with consideration of the first boundary condition of Eq. (7) we obtain 

2 H~ O~ i 16 3 F1--  ~" ~.~ 1 OH (~ ~ ar  (~) - - -  ) '  t h  ( 1 8 )  

( I ) ( 1 )  ~ _  ~ _ _  

2 / oW0). 2 I I  (~ ,! ...... ,r 1 

In view of continuity equation (ii) 

If the distribution of the normal component of the specific liquid fluxes qn is speci- 
fied along the contour r, then 

1 acl) (j) 1 ' acI) r  
H1 a~ ~ ' c ~  eO+ H2 a~" ices(n, e2)=OonF 

and in view of the uniqueness of the solution of the internal Neiman problem for Eq. (19) 
the function @(z)(~1 ( )~2} =i 0 in the entire region S (limited by the contour F) and the 
pressure coefficient ~ i (6 , $2) can be calculated with the expression 

~ ( OH(~ ) 2" Ii(1) 3 ~ 1 (20) 
35 z~ Hh 6~ ~ 

h ~ l  " 

Given the  p r e s s u r e  d i s t r i b u t i o n  on the  contour  r the  p o t e n t i a l  ~(1)(~x.  E2) can be de- 
f i n e d  by s o l u t i o n  of the  D i r i c h l e t  problem for  Eq. (19) wi th  the  boundary c o n d i t i o n  

(I)(1) 1 ~ 1 Oil (~ on r .  ( 2 1 )  
35 H~ 6~ k J 

The fo l lowing  i t e r a t i o n  has the  form 

~ 2 - -  

a2uJ 2) 1 [ari c2) ,~(u~~ Ou~ ~) u~') Ou~ ~ 

=/-/-7- + - -  

. , t ) , , (o) OH~'~ l  r~(4) au} O) 

uk + )J + -  a; HjHh a~ ~ Hflh ~ Y 

(22) 
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Substituting Eqs. (18), (20) in the relationship obtained from continuity equation (3) 

Ow (4) ? [ O(H~u~ ~,) O(H~u~ ')) ] 
O~ - -  H~H2 . 6~) + O~ 2 

and using the second boundary condition of Eq. (7) we find the coefficient w(%) for a flux 
distribution qn specified on the contour r 

[#2(4) = y 
16 

X ~'~ H~H~ O~ i 

The second term in square brackets in Eq. 

H: 6~ i ~__, H~ a~ ~ ; i = l ,  2; i :# ] .  

(22) can be w r i t t e n  in  t enso r  form: 

(23) 

(U(0) )h(U(1) )j,h -~ (U(1) )h(U(O) )],h = (U(0) )h [(U(1) )],h_(U(1) )h,])] 

a (U(,) + (U(,))k [(u~O~ )i,k_(u,O~ )k,A + ~ [(.U<~ )hi. 

It then follows from Eqs. (i0), (18) that (u(i))j, k - (u(i))k,j = 0 at i = 0, i, so that 
the corresponding term is equal to 

,,(0) .,(lh 0 (u~O)u~I)'+'u,2 U2 '- 
6~ j 

Substituting Eqs. (23), (24) in Eq. (22) and integrating the equation obtained twice 
over ~ we then find, using the first boundary condition of Eq. (7), 

(24) 

U~2)= 1--~2 1 /)1"1 (2) 1 , [ +  
2 Hj 6~ j + - - ~  (aa-{- as-- a=--alo) - -  

1 (a,~+a~--a~--alo) 11 (ar+a6--a,J] • 
3 35 

X m /-/j a~ i = /-/~ 
oH (~ i 0 

a~ i Hi 6~ ~ 
1 01-I(~ _ % [ ~ ( a a _ ~ ) l  

h=l 

1 1 OH ~2l 52 [ 1 0 qO) 
i --  3 Hj 0~1 - - 3 6 3 8 2 5  IH j  O~ i x 

1H i O~i Hi d~i Hi O~.i Hh O~k 

I 1 0 I I ( ~  l O [Hz 0 2-~,( 1 
+ Y  Hj a (  H~//~ a~ i H, d~' ff,~ 

i = l  = 

1-- r - - "  I=1 ,  2; l=/=i. 
a,~-- n(n --1)' 

_ _  aH <~ 

6~k )2];  

_ _  Oil r176 }; 

In light of continuity equation (ii) 

3 H~H~ d~ i d~ i 
i=l  

363825 ,~--1 H1H2 O~ i Hi 6~' =lHh O~ h Ha O~ h 
X 
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1 

i = l  Hi 

OH(~ )2)] I ~ I O,H(~ ~ 0 
--O~ / + - 2 -  H~ 8~ ~" H~ O~ ~ 

] = I  

>< 

_o 1 0 [H~ O ~ ( 1  OH(~ )21] 
• X H~H~ 8~ H~ O~ ~ ~=, H---~ 8~ "---W- [=0;  /= I ,  2; l=/=i. 

f = l  

On the basis of Eq. (14) the last term in curly brackets can be represented by the sum: 

1 2 1 O Hw. O rl(~ HIHo 8~ ~ ~ ' 
4 ~ H~H~ 8~ i O~ i ~ ~=~ . ]=~ H~ O~ ~ ~==~ H~ O~ ~ " 

Consequently, the vector 
q}~) _ 1 Off) (2) 

H~ 0~ ~- q~" 
The potential r like r satisfies Eq. (19), while the vector 

qj2-- 363 825 2 H i 0~ 1' .= H~H2 8~ - - - 7 -  >< 

(H,  0 ~ ( 1 0H( o))2)] 1 OH(~ 1 O [H~ 0 ~ (  1 0H (~ 
•  n~ O~ ~ h~==~ �9 n----~ O~ ~' Hj - ~  ~__~ H~H~ e~ ~ H~ e~ ~ '~=, H# O~ ~' " " 

If the liquid flux distribution qn is specified along the contour F then determination 
of the function r $2) reduces to solution of the Neiman problem for Eq. (19). On 
the contour F the conditions 

1 a~ (u~ 1 6~(2) cos (n, e0 + cos (n, ~) -}-qx~ cos (n, e0+ q~2 cos (n, e~) = 0 (25) 
HI O~ ~ H2 O~ 

must be satisfied. The coefficient of the series expansion for the pressure 

H ( 2 ) = _ 3 0 ( 2 )  52 {~]I 1 0H(~ 1 0 ~.~ ( I OH(~ 2 
363 825 Hi O~ t H~ 8~ i Hhj 8~ ~ + 

= h = l  

(26) 

! ri(O) ~ 1 0 Hz 0 1 0II(~ 
+ 4 HxH2 8~ i H~ 5~ ~ H~ " ~ ]  " 

f = l  = 

(m) The three terms of the expansion uj found above are analogous in structure to the cor- 
responding terms of the expansion describing flow in gaps with a planar median surface [2] 
and are a generalization of the latter to the case of an arbitrary surface whereanorthogonal 
coordinate system has been introduced. The functions r r and r satisfy one and 
the same Eq. (14) (or Eq. (19)), which is a generalization of the two-dimensional Laplace 
equation to nonplanar surfaces. Therefore in solving the corresponding boundary problems in 
some cases it is possible to effectively utilize a conformal projection of the region S of 
the median plane onto a region of some other surface for which the corresponding boundary 
problem can be solved easily. Thus, for example, a stereographic projection [3] permits 
conformal mapping of a portion of a spherical surface limited by an arbitrary set of arcs 
of circles onto a planar region with a boundary consisting of arcs of circles and straight 
line segments. If the median surface is evolvable, then before solving the problem it is 
desirable to map the region S onto a plane which allows use of the methods of analytic 
function theory. In [4, 5] such an approach was used to analyze flows of vapor which deve- 
lop with a double phase transition in gaps between cylindrical and conical shells in tem- 
perature stabilization of large size objects. In [6] analogous problems related to heating 
of thin-walled shells were solved by the virtual source (sink) method and expansion of the 
unknown function in eigenfunctions of specially constructed equations. 

NOTATION 

Vxi, physical components of velocity vector (i = 1, 2, 3); x I, x 2, x 3, orthogonal curve- 
linear coordinate system; Hi, , Lam~ coefficients; 6ki , Kronecker symbols~ 2h, gap size; r0, 
linear scale characterizing curvature of median surface; e = h/r0; Hj,dxJ = r0Hjd$3 (j = i, 
2); dx 3 = hd~; Vxj = Vuj; Vx3 = Vw; p = (0~r0V/h2).H, pressure; xij, viscous stress tensor 
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components; Re, = Vh/v; Re = eRe,; S, median surface region in which liquid motion is studied; 
F, boundary of region S; 2q~, components of liquid specific flux vector in oa .... (k) J - k b ~, ~ , co- 
efficients of asymptotic expansion of function o~; ~[ )_ vector notential of ~.(k~. ~. �9 - ~J " ~ ~3 ' ~3' unit 
vector tangent to coordinate line ~3; n, external unit normal vector to contour F; qn, com- 
ponent of specific liquid flux vector along external normal; (u(k))j, (u(k))~, contravariant 
and covariant components of vector uj (k) = Hj(u(k))J = Hj -1 (u(k))j; (u(k))j~s covariant 
derivative of covariant vector; p, llquid density; ~, kinematic viscosity coefficient; V, 
flow velocity scale. 
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LOCAL HEAT EXCHANGE OF A CYLINDER IN A SLIGHTLY DUSTY FLOW 

O. V. Molin UDC 536.423 

A study is performed of thermal resistances of convective heat exchange and 
thermal conductivity caused by reduction in the intensity of heat exchange 
when loose deposits are formed on the cylinder. 

In energy and heat utilization apparatus, the dynamic equilibrium of the layer of loose 
deposits formed on tube surfaces is determined primarily by precipitation from the flow 
of fine particles, accompanied by destruction of the layer by collisions of coarser ash par- 
ticles. In a number of devices (for example, gas-cooled reactors with spherical shells) 
the flow becomes contaminated by micron-size particles of a narrow fractional compositio n 
due to wearing and ablation of surfaces drafted by the flow. In view of the complete ab- 
sence of binding components in the flow deposits of increased friability and an anomalously 
loose structure are formed. The absence of reliable information on the structure of such 
loose deposits, their distribution over surfaces, and their effect on heat transport prohi- 
bits determination of the local heat-exchange mechanism and sufficiently precise explana- 
tion of reductions in heat-exchange intensity. 

The present author and Spokoinyi [i] studied mean heat exchange of a cylinder with a 
cooled slightly dusty (~ < 2.10 -~ kg-sec/(kg-sec)) air-graphite flow under conditions where 
a loose friable deposit was formed�9 The dispersed material used was type S-I natural gra- 
phite powder (ds = 7 um, d t min = 1.8 ~m, d t max = 15 ~m; Ps = 2000 kg/m3). The poly- 
styrene cylindrical tube (D = 21• mm; X w = 0.1165 W/(m'K)) was located horizontally in a 
cooled descending flow. Heat removal from the cylinder wall was accomplished by pumping a 
coolant liquid. 

The experiments on local heat exchange studied the effective heat-liberation coefficient 
e in 

. 2Xw (lw ~--tw ~) 

afi= De (?,__ t e D 4 i) In - -  
D i n  

Odessa R e f r i g e r a t i o n  Indus t ry  Technological  I n s t i t u t e .  
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